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Abstract 
The manufacturing industry is embarking on a progressive level of maturity concerning digitalization. 

Maintenance is a fundamental segment where competitive advantage can be acquired, through the 

implementation of quality and data-driven techniques. In manufacturing and especially in the present use case, 

quality standards are of major importance as they configure a level of difficulty to the global production 

process. Manufacturers have available a more advanced technology environment, looking at data as an insight 

generation tool. Currently, the machines are not prepared to offer an integrated perspective of the system, 

thus being challenging the identification of the root causes for the majority of the failures. The present thesis 

reports the work developed to address the requirements stated above. Equipment data acquires in this work, a 

unique interest while it is manipulated to develop an intelligent predictive model adapted to the industry 

environment. With this aim, it is proposed a novel method for integrating equipment data suppressing the 

need for a large number of variables and facing uncertainties in the system data flow. In addition, a framework 

for visualizing patterns and equipment interdependency is developed. The current study provides the 

manufacturer and the respective maintenance team an effective tool that can be integrated into the existing 

system providing insight and increasing the conformity with quality standards and production goals. 

 

Keywords: Data-driven analysis, Machine learning, Failure prediction, MTBF, Manufacturing Industry. 

 

1. Introduction   

The industrial environment is changing and digital 

technology is the leading actor in what is considered 

as the emerging paradigm, Industry 4.0. The 

idealization of smart manufacturing is supported by 

the integration of “smart technologies” with standard 

manufacturing devices as sensors, machines and other 

equipment. One may affirm that the manufacturing is 

by itself adjusting to human needs and to the 

constraints of its supply chain. This fourth revolution 

can be materialized by attending to cyber-physical 

systems – a merge between the physical and the 

digital grades. An example of this systems can be 

found in the preventive maintenance area, where the 

condition of a physical equipment and the associated 

parameters are reflected in a Digital Twin [1]. The 

combination of artificial intelligence, big data, 

streaming analytics and machine learning, defines a 

powerful tool for the manufacturing environment. 

The maturity level of technology dictates the short 

number of documents regarding the application of 

predictive maintenance to the industrial context, the 

contribution of this research holds the following 

alignment of achievements: 

• A tool for combining asymmetric data sets; 

• An apparatus for visualizing patterns and 

interdependency of machine behaviour; 

• An approach to overcome unknown variables; 

• A data-driven machine learning classifier adapted 

to the manufacturing industry. 

1.1. Background 
The diversification of challenges faced by industries is 

leading maintenance job to constantly grow to a 

more mature state, taking advantage of technological 

evolution to redefine the strategies followed by 

maintenance teams.  

Corrective maintenance is far known as the “only 

fault repair” approach and it is on the basis of the 

maintenance ideology. Despite being the earliest 
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maintenance mode, this strategy it’s deeply common 

in industries with reduced complexity and 

conservative culture. Taking into account the 

majority of industries, preventive maintenance is the 

endorsed method to address maintenance needs, 

performing a regular inspection at well-defined 

periods of time in order to prevent deterioration of 

equipment and possible loss of product quality 

generated by faulty components [2].  Bearing in mind 

a lack of data regarding the system operation and the 

absence of intelligence with the capability to process 

this information, it’s acceptable to adopt the 

previous strategies. However, several companies are 

realising the true cost of maintenance and the 

potential they can achieve with a more adapted 

strategy. For this reason, predictive maintenance is 

the main hypothesis on this thesis, representing the 

concept that allows high reliability and enhances 

economic efficiency.  

Predictive maintenance itself is not a replacement for 

the two methods previous presented, it’s essential to 

have a combination between “run to failure” 

approach and preventive actions. In this blend of 

strategies, predictive procedures can complement the 

results by reducing the number of unexpected failures 

and identifying periods to apply specific maintenance 

tasks. This late concept is usually adopted as a tool 

for maintenance management aiming to prevent 

unscheduled downtime, as a plant optimization tool 

helping the definition of production procedures and 

parameters and also as a reliability improvement tool 

identifying the deviations in the operative 

specifications triggering operator actions preventing 

the potential failure or loss of quality in the 

production [3]. Usually, both intrusive and non-

intrusive methods are used to complement each 

other, achieving superior results by combining them 

with maintenance and operational data to build a 

device capable of estimate equipment lifetime and 

plan maintenance unexpected activities [4].   

Predictive maintenance models are typically 

developed by considering machine learning techniques 

as data mining and machine learning classification. In 

the maintenance environment, the aim of supervised 

learning is usually to predict a value or a label of one 

variable such us time to failure or the end of life of a 

component, and it can be achieved by knowing the 

values of other variables (production, sensors data 

and other information). If the variables being 

predicted are not a value but a category, then the 

problem is described as classification [5]. 

Ensemble methods were used in the current thesis to 

develop a machine learning model for classification. 

These methods are learning algorithms that, from a 

set of classifiers, perform a weighted vote on their 

classification and then estimate a class to the new 

entries. In a simple manner, the ensemble 

classification combines the prediction of several 

estimators in a given algorithm, thus improving the 

robustness of a single classifier [6]. Contained in the 

category of ensemble methods are the forests of 

randomized trees. In the case of this methodology, a 

set of classifiers (decision trees) is created by 

introducing randomness in the classifier construction 

as detailed in the following illustration. 

 

 
Figure 1 | Representation of forests of randomized trees in 

machine learning classification. 

In Figure 1,  is the learning data set fed to the 

algorithm, while  are the randomly 

generated decision trees.  and  are, respectively, 

the features and the associated output class. In its 

learning stage, the algorithm adjusts its parameters 

to learn from the learning data set to classify the 

output class .  

On this thesis, predictive maintenance converges with 

condition base monitoring, applying an intelligent 

system which can identify patterns and predict 

potential failures based on progression of the 

equipment status, operating conditions and 

maintenance team experience. This approach can be 

adapted to systems without a substantial volume of 

information and it’s also qualified for the initial stage 

of equipment’s lifetime in which the number of 

failures is higher, usually characterized by the 

difficulty in identifying potential problems in the 

quality control inspections. Therefore, using technics 

that are non-destructive and adaptable to the 

installed system, it’s possible to take actions to 

bypass the potential failure of an equipment 

improving one of the most important performance 

indicators, the Overall Equipment Efficiency. 
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2. System Description 

The current thesis comprises a study of an industrial 

process to produce a solid light weighted product 

subjected to strictly regulated quality standards.  

Given the complexity of the global process and all its 

variables, it was considered data of the two machines 

with the largest impact on overall downtime. From 

now on they will be referred as Maker and Packer, 

respectively the machine that constructs the product 

by assembling all its components and the one that 

groups the individual products, also referred as Units, 

in a pack. As Figure 2 suggests, Maker is fed by 

product’s main component and other secondary 

constituents. The first element, β , is primarily 

processed and experiences several treatment steps in 

the initial stage of the global process, conceiving from 

the raw material a highly standardized substance 

with well-defined characteristics. However, particles 

that compose this component have variable size, 

weight and properties. Taking as an example, two 

particles that have experienced equal conditions of 

processual treatment can vary in ductility, density, 

and shape. This is mainly due to feedstock traits and 

confers on the product a blend of properties that 

gives its unique characteristics. Reasonably, in the 

system Maker-Packer, the flow is not direct and 

accounts with a large buffer that can sustain about 

15 minutes of continuous packer consumption. 

Considering that both machines are programmed to 

produce 14000 units per minute, the Buffer is 

estimated to hold 200000 units at average capacity. 

In the Buffer, the individual units have some freedom 

of movement that could enable the loss of material 

and moisture, minor deformation and accentuation of 

previous assembling flaws, hence interfering with the 

proper functioning of the system. 

 

 
 

Figure 2 | Process diagram of target section compromising 

both machines addressed in the study (M aker and 

Packer) and the interm ediate Buffer. Representation of 

intake areas. 

 
Maker can be subdivided into three stages:  

M-A. Admission and distribution of feedstock; 

M-B. Construction of preliminary product; 

M-C. Formation of the final product (Product A) 

and the introduction of finishing steps crucial 

to grant desired properties.  

After the individual unit goes through the buffer it’s 

then forwarded to Packer intake zone where it’s 

reorganized along with other units to fit the package 

geometry. Later, the group of units is directed to the 

second stage of the machine designed to build the 

pack. It is possible to define two stages for this 

operation: 

P-A. Admission and reorganization of a set of units; 

P-B. Construction of the pack (Product B) and 

coupling of secondary constituents.  

Machines composing the System are current top 

performers and account with a robust rejecting 

system based on real-time measurement of well-

defined parameters and assessment of product 

quality. In the case of product’s properties doesn’t 

meet quality standards, it will be rejected. It is also 

essential to bear in mind that machines are 

programmed to stop if the number of rejected pieces 

overcome a defined threshold that could vary 

dependently on the equipment.  

2.1. Data characterization 

It was considered as sample a historical time span of 

4 months that represents 100 days of production. 

Data were retrieved from a framework that integrates 

sensors from all connected equipment and provides 

aggregated operational information. Without 

treatment, the information used from both machines 

should be analysed as two independent datasets as a 

result of an asymmetrical temporal domain. The 

following conjectures are a consequence of the way 

data was generated from the system and are valid for 

both machines: 

• Machine events data are a continuous data set 

grouped in time periods by machine status; 

• Each row represents an alteration of machine 

status from the precedent row, thus a new event; 

• Data is arranged in descending order of time; 

• No major maintenance operations were performed 

on the machines; 

• No manipulation has altered the data, thus 

providing a plain exportation of measured 

variables. 
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Three status can be identified in the machines as a 

typical sequence in the data set. Starting always 

follows a stop or the begging of a production, and it 

is proceeded by Normal run after an average time of 

30 seconds. Notwithstanding Ramp-down status being 

essential to complete the stop procedure, it isn’t 

necessarily true that it will occur. More severe 

circumstances usually determine an immediate stop 

of the machine, independently on the status (Starting 

or Normal run). The integration of the two data sets 

constitutes the first challenge engaged in this thesis 

as represented in the following illustration:  

  
Figure 3 | Transposition of an operational example into 

the data set structure.  

Bearing in mind that each row in the data set 

characterizes the machine status in each time span, 

it’s correct to assume that each coloured block 

represents an entry. Therefore, as Figure 3 suggests, 

even considering that Maker and Packer start their 

production simultaneously, the periods of one 

machine does not match necessarily the time 

windows of the other. From now on, the presented 

blocks will be referred as Events as they are the 

reflection on the data of the events occurred during 

the operational time. 

A crucial part of the present thesis concerns the 

expert knowledge of the people whose daily 

responsibilities comprise direct contact with the 

system in study. Operators experience is essential to 

understand raw data from the machine as they have 

the expertise to transpose the information recorded 

into concrete day-to-day situations. 

2.2. System stops analysis 
The study was centralized in the product that 

presents higher production, necessarily having more 

historical data to work on. In addition, its production 

has the lowest MTBF, a simple indicator that takes 

into account the total uptime and divides it by the 

number of stops. For this variety, the value of this 

indicator referred to the historical period was 19.0 

and 6.73 minutes respectively for Maker and Packer. 

For the same operational time, lower MTBF implies 

a larger number of stops, thus representing higher 

variation in machine status that consequently 

generates more rows.  

As previously mentioned, Packer’s location in the 

process is highly sensitive to uniformities in feedstock 

properties. Given that this feedstock is a result of 

Maker’s Good Production, it is fundamental to 

describe the behaviour of the making machine. With 

this aim, two dimensions were considered: 

• Average rejected units by stop : Number of 

rejected units that a stop by a given Stop Reason 

rejects in average, providing an estimation on the 

extent of the damage motivated by the failure. 

• Average duration by stop: The amount of 

time spent by the operators to fix the failure and 

restore the operation.  

The indicators above were determined by equations 

(1) and (2), respectively. 

 
 

 

The following diagram supports the distribution of 

failures in the two machines granting an intuitive 

perspective of most distressed areas. Notwithstanding 

M-B and M-C accounting with a large number of 

stops, Packer’s location P-A1 accounts with more 

than 50% of all system failures. This section presents 

a peculiar set of characteristics related to machine 

stoppages as they have a short average duration of 67 

seconds, meaning that an operator is able to quickly 

identify and mitigate the disturbance. 

 
Figure 4 | Process diagram of target section embedded 

with stop analysis based on relative position. P -A1 is 

marked in red as the target area.  
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In the industrial environment, when an obstacle is 

easily managed, it is typically comprehended as a 

daily reality, underestimating the impact that can 

have in the production and in the activity of the 

operator.  

Nonetheless, given its high number of occurrences, 

these particular failures have an extensive 

repercussion on the global downtime - close to 2 

weeks for each year. In addition, as previously 

mentioned, one stop can generate a stage of Ramp-

down and necessarily a Starting stage. The two 

phases of the operation are moments of low 

production rate and perform a total of 9 days 

without taking advantage of the capability of the 

machine in its target speed. P-A1 portrays a 

bottleneck, where hundreds of Units are forwarded to 

fit in a space for small dozens in a high-speed 

performance machine. These circumstances, along 

with uniformity of feedstock Units, compose the ideal 

environment for one complication - the blockages. 

According to the above line of reasoning, P-A1 is an 

evident choice for the target area giving that: 

• Failures in that section are frequent; 

• Blockage is mostly motivated by uniformities in 

feedstock Units; 

• Operators have a clear knowledge of the actions 

they should take to restore the normal operation; 

• Total downtime is heavily affected by PA-1 

blockages. 

The following line-up provides a description of the 

main challenges addressed considering the focused 

area: 

• Machines’ data sets are asymmetric in time;   

• Lack of information on sensors data or other 

variables; 

• Unworkability on buffer size estimations; 

• High rate of failures near P-A1; 

• Defective maker products can also perturbate 

other sections. 

3. Approach 

Engaging the consequences of blockages identified as 

target stops and considering their occurrence is in 

the intake zone of Packer, it is fundamental to 

examine preceding variables as potential motivators. 

The integration of two asymmetric data sets is the 

primary challenge addressed, settled in consecutive 

concepts: 

1. Sequence Windows; 

2. Apriori Algorithm; 

3. Support Matrix. 

The mechanism developed provides an innovative 

approach to reproduce insights from machine data 

adapted to overcome conditions of lack of 

information on independent systems. 

3.1. Sequence W indows 

Pattern Discovery is embedded in the definition of 

Data Mining, as it is the detection of similar 

structures on large data sets. The largest is the data 

set, more likely it is of having a high content of data 

distortion and uninteresting patterns, becoming 

impractical to apply simple statistics on data and 

consequently paving the way to data science through 

machine learning and other advanced computer 

techniques. Notwithstanding, deciding whether the 

patterns found are or not relevant and pertinent to 

the circumstances, should take into account the 

operational context and knowledge from experienced 

people whose function is directly associated with the 

subject [7].     

As previously mentioned, information of each 

machine is independent and it is a result of the 

evolution in the operational status. Accordingly, 

Maker has events in different time spans than 

Packer, what makes inconceivable the aggregation of 

two dimensions: Start-time and End-time. To 

conveniently associate this information only the first 

one was considered. However, this assumption 

originates a disadvantage: without a timespan, the 

association of variables is not possible. This limiting 

opportunity makes attainable to identify patterns in 

the sequence of Maker events and in the 

interdependency between equipment that comprise 

the system. Data from the two data sets was 

aggregated and organized in descendant order of 

Start-time.  

That said, it is appropriate to assume that there is a 

sequential set of events with different Stop Reasons 

forming a chronological sequence that illustrates the 

behaviour of both machines regarding their stops. 

 
Figure 5 | Illustration of the application of Sequence 

W indows technique.  
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Intending to identify patterns in the sequence of 

events, the methodology described by Vilalta et al [8] 

references a similar approach as illustrated by Figure 

5. The target stops define the beginning of the 

Lookup W indow, a well-defined time span 

proposed to determine what events occurred from the 

Start-time of the target event until the edge of the 

window. In the developed concept, the proposed 

methodology was adapted to engage the thematic of 

equipment interdependency. As depicted in the 

representation, the objective was to set a window 

with a fixed size immediately before a target stop 

with the ability to identify the preceding Maker 

events during the given time span. The output 

contains crucial information to identify patterns in 

the interdependency of the two machines, as it 

expresses every event that happened in Maker in a 

well-defined period preceding Packer target stops, 

composing the input for the next topic. 

3.2. Apriori Algorithm 

This method is widely adopted to perform temporal 

data mining and is known for identifying association 

rules between frequent events and also providing 

statistical indicators, as the support value [9].  

Support is directly related to the frequency that two 

events occur in the data set. 

 
Where  is the number of times that  and  are 

simultaneously present in a transaction being  the 

universe of all transactions present in the data set 

[10].  

To better understand the fundaments of Apriori it is 

essential to recognize the following concepts: 

• Transaction: Set of events associated with a time. 

Each row in the input data set is a transaction; 

• Item: Unit of a transaction. Each event is an item; 

• Support (s): Percentage of transactions containing 

a given item; 

• Rule: The rule  with refers 

that the event with ID -1 occurs before the target 

event in 10% of the transactions in the data set.  

3.3. Support M atrix 

Considering the 56 Stop Reason that can induce 

Maker to a stop, there is the same number of rules 

that can be defined with the employment of the 

Apriori algorithm.  

Nonetheless, it is important to be aware that Maker 

and Packer are separate machines and often present 

failures that are not related to each other. Therefore, 

it becomes evident that not all the derived rules are 

relevant to the analysis and it is essential to consider 

a threshold of minimum support, s, with the purpose 

of obtaining only rules that are sufficiently supported 

by this statistical indicator. Insights from experienced 

personnel play also an important role deciphering 

each rule with an effective support. This action 

provides fundament to the rule, complementing the 

output with transcription of the operational 

situation. 

The Support M atrix is the combination of the two 

concepts elucidated in the present chapter (Sequence 

Windows and Apriori Algorithm) and it represents 

one of the innovative aspects conceived in the 

formulation of the current work. It is designed to 

address the adversities on the integration of two 

asymmetric large data sets and the analysis of the 

interdependence existing between equipment. 

Depicted in Figure 6, the matrix is composed by two 

axes (size of Lookup Window and ID of Maker 

Event) and it provides an intuitive perspective of the 

rules between a pair of items, the target event and 

the Maker Event. The stronger the correlation, 

highest is the support and darker the colour set on 

the respective field. The interpretation is done by 

considering the concept of Lookup Window detailed 

earlier and it follows the logic exemplified by the 

following outcomes: 

• The Stop Reason ID -2 occurs in 30% of the 

transactions generated with a Lookup Window of 

16 minutes; 

• Support associated with Stop Reason ID -1 only 

becomes significant when the Lookup Window is 

greater than or equal to 17 minutes; 

• This set of ten types of Maker Events presents the 

failures that can occur in Maker and have a 

significant impact in Packer’s functionality given 

variable time spans from 1 to 20 minutes  

 

 
Figure 6 | Support M atrix resultant of the mechanism 

developed for the integration of both data sets.  



7 

 

Note that minimum threshold was set to a support of 

5%, meaning that the set of Maker Events comprises 

only the ones with support greater than this 

threshold in at least one of the Lookup Windows. 

Support Matrix is, for this reason, a powerful tool in 

the identification of patterns and correlations 

between events. One of its main advantages is the 

versatility shown dealing with incompatible data sets, 

only requiring one common variable related to time. 

It provides insightful information on equipment 

behaviour, creating relations among events, pointing 

out the statistical strength of the relation.  

In the current hypothesis, Support Matrix has 

another decisive purpose. Its output, the set of Maker 

Events with a potential association with Packer’s 

target stops, plays an essential role in the following 

section, which comprises the conception of the 

intelligent model developed to engage the problem. 

The performance of the model is highly influenced by 

the process of variables and features selection, 

important to build faster and more cost-effective 

predictors facilitating data understanding and 

reducing training times. 

4. M odel development 
From operations to process, the application of 

machine learning systems in the manufacturing 

industry has been a reality. The integration of this 

intelligent systems capacitates the manufacturer to 

understand patterns and generate insights from large 

data sets. As previously described, supervised 

learning is related to the prediction of a target 

function. This form of machine learning is often used 

in the manufacturing environment as the majority of 

problems can be divided into two categories: 

predicting a quantity or predicting a category. 

4.1. Projected Purpose 

Developing a machine learning model should 

invariably begin by the definition of the goals and 

capabilities that are expected from it. In the current 

case, the mechanism must address a set of situations 

widely known in the manufacturing environment: 

• Handle noisy data comprising outliers; 

• Process large data sets from more than one 

source;  

• Generate perceptible insights; 

• Provide a positive impact on production; 

• Possibility of scaling the model. 

Bearing in mind the analysis taken on the previous 

chapter and the points stated above, it becomes 

evident that the problem minded in the current thesis 

can effectively be handled by applying an estimator 

for Predicting a Category, also referred as a 

classifier.  

The target stops are a constant reality in the daily 

operation of the studied line. Nonetheless, in these 

failures, the job of searching for the defective location 

and resetting the normal behaviour is done in an 

effective way. As the operators are familiarized with 

these blockages, it only takes about one minute to 

solve them. On the other hand, the impact the 

target stops have on overall downtime makes 

inevitable to attend them. It’s not only the 

production that is affected by the number of times 

these blockages occur, but also the operators’ 

performance should be considered. Looking from the 

operators’ point of view, the blockages occur 

randomly and with high frequency, interrupting any 

task that is being performed. Bearing this in mind, it 

becomes evident that the goal of the machine 

learning model was to provide an estimation of when 

a target stop would occur. Transposing from the 

operation to the model, it means that the conceived 

classifier should predict an event based on the 

information from its variables. In the operation, the 

same trained classifier should be capable of process 

real-time data and provide a warning when a 

blockage is predicted. 

4.2. Feedstock Data 

A typical classification problem usually requires the 

data to be labelled in a binary form. Considering the 

present use case, the classifier should correctly 

identify a Packer blockage in the target area from 

all set of events, therefore data labelling was 

performed by attributing 0 or 1 to the set of events 

(y). 

In simple terms, this model is designed for correctly 

classifying y, given the related attributes X. The 

events were binarized considering that the target 

stops are the positive results and the universe of all 

other stops are the null perspective, as it follows: 

 
Table 1 | Identification of labelled events.  

Stop Reason ID Label 
 

Universe 

 
 

 Target stops 

  Remaining Packer stops 
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Therefore, it was considered the following alignment 

of general variables, given their solid rationalization: 

• Packer-Average speed before failure. 

• Packer-Total Product Produced before failure. 

• Packer-Rejected Production before failure. 

• Maker-Total number of rejected Units. 

4.3. Time Dimensionality 

Without exception, in every engineering problem, 

time is a reality that cannot be suppressed and often 

defines the designed approach to engage it. From the 

beginning to the end, this variable is an absolute 

entity, present in the Sequence Windows, the 

construction of the Support Matrix and as further 

addressed in this chapter, in the model development.  

At average capacity, Buffer holds 15 minutes of 

production, meaning that, when leaving Maker, a 

Unit takes 15 minutes to get to the target area. 

Instead of estimating this value based on the 

difference between the Packer consumption rate and 

Maker Good Production rate, another approach was 

developed considering the downtime of the 

equipment. In the case of Maker presenting a higher 

downtime than the consecutive machine, the Buffer 

will drain out faster as Packer is consuming more 

Units than what are being produced by the 

subsequent machine. Relying on the earlier 

declaration, the logic of Lookup Tier was built based 

on the estimation of the Buffer’s size. For each 

output variable (y), in a time span of 20 minutes 

preceding that stop, the downtime of both machines 

was determined and the following relation applied: 

 

As it is evident, the calculated difference, the larger 

is the Buffer size and the longer it will take for a 

Unit to course through this equipment. For this 

purpose, it was created the concept of Lookup Tier – 

a define time span that starts in  minutes from 

the Packer stop  and ends in . The 

conception of tiers of analysis is described by Table 2.  

Table 2 | Lookup Tiers for the estimation of Buffer  size. 

4.4. Classifier 

As earlier described, Ensemble Classifiers holds a 

group of predictive algorithms developed with the 

same goal, provide improved generalizability and 

robustness to the estimator. Present in the context of 

this group is the Extremely Randomized Trees 

classifier, which is descendant of the widely known 

category of Random Forests. However, in the case of 

the first classifier (ET), the nodes are split by 

choosing cut-points fully at random reducing the 

variance induced in Random Forests. In addition, ET 

uses the all learning sample to grow the trees instead 

of a bootstrap replica [11]. 

5. Results 
Composed by a set of metrics, the evaluation strategy 

considers two different perspectives: Data Science and 

Operational. It is important to bear in mind that the 

evaluation results are referred to the employment of 

the validation data set. This subset of the global data 

was not used in the construction of the model and, 

for this reason, is the appropriate structure of 

information to test the performance of the algorithm. 

 

5.1. Data Science Perspective 

The concept of probability threshold must be taken 

into account. In a simple binary classification (1 or 0) 

the classifier estimates the probability of the output 

variable being one of the classes considering the 

respective features. By default, if the probability of 

attributing class 1 is greater than 50% , 

the algorithm associates the output variable to 1.  

However, it is important to contextualize the 

performance of the algorithm given its application, 

because in some cases, the machine learning method 

could be stricter or softer when attributing a class 

depending on a threshold. Table 3 depicts the results 

of this application to the validation data set 

considering a threshold of 0.7.  

 

Table 3 | Overall evaluation m etrics.  

M etric (Class = 1) Value (%) 

Sensitivity 78.8 

Precision 84.3 

Accuracy 76.9 

F1 Score 81.4 

FDR 15.6 

 

Tier  

Downtime Difference 

(m inutes) 

Lookup Tier 

Boundaries (m inutes)  

M inimu

m 

M aximum  Start ( ) End ( ) 

1 < -30 - 30 

 

0 5 

2 -30 -20 5 10 

3 -20 -10 10 15 

4 -10 10 15 20 

5 10 20 20 30 

6 20 30 30 45 

7 30 > 30 45 60 
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5.1.1. ROC Curve 

The area under the Receiver Operating Characteristic 

curve (AUC) depicts the ability of the algorithm to 

distinguish each class, thus a higher AUC means a 

better effectiveness when attributing the respective 

labels, known as separability.  

 
Figure 7 | Representation of ROC Curve and AUC. 

5.1.2. Precision - Recall Curve 

Precision – Recall Curve is often used to address the 

influence of imperfections in data such as skew and 

unbalance. Algorithms that optimize and prosper in 

the ROC Curve analysis are not guaranteed to 

perform well under the evaluation of Precision – 

Recall Curve.  

 
Figure 8 | Representation of Precision – Recall Curve. 

5.1.3. TPR - FDR Curve 

In manufacturing, it is crucial to be effective and 

simple when addressing a problem. For this reason, 

the False Discovery Rate (FDR) is a powerful 

indicator as it represents the proportion of false 

positives identified in a real context.  

 
Figure 9 | Representation of TPR – FDR Curve. 

 

A balance between the True Positive Rate and FDR 

must be taken by identifying the optimal operation 

point in the curve. In manufacturing, this optimal 

point is often located in the illustrated green area. 

5.2. Operational Perspective 

The following alignment presents the effects of the 

algorithm predictions considering a threshold of 0.78 

with a 10% rate of false discoveries. It is essential to 

consider that the prediction is merely indicative 

providing the knowledge of when the stop is expected 

to occur. To reduce the blockages in the target 

area, is necessary an action from the operators, 

which can sometimes be not successful. It was 

considered that in 50% of the cases the experienced 

personnel can achieve to effectively by-pass the 

problem. 

Therefore, the calculations regarding the achievable 

MTBF are contemplated in the following alignment 

and the table summarizing operational data of the 

packaging machine. 

 
Table 4 | Summary of stats data from Packer in the 

historical period considered.  

Uptime (hours)  1257 

Total number of stops 11211 

H istorical M TBF (minutes)  6.73 

H istorical target stops 9486 

Target stops predicted (threshold = 0.78)  6450 

Achievable Uptime 1317 

Achievable target stops  3225 

Achievable M TBF 9.9 

Achievable Increase in M TBF 47% 

 

6. Conclusion 
To address the machine learning problem engaged in 

the current work, two goals were defined. Primarily it 

should provide insights on machine behaviour that 

are understandable and can be transposed to 

operational environment and then the prediction 

target stops based on the production data of the 

making machine. 

6.1. Discussion 

These goals were attained in the stage of data 

processing and feature selection by developing 

algorithms capable of interpret the data. Based on 

statistical theories, it was conceived the Support 

Matrix tool. Promoted by Apriori algorithm and 

integrated with the logic of the Lookup Windows, 

this framework provided a set of outputs 

fundamental to pattern recognition.  
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In this case, the Support Matrix provided the set of 

Maker Stop Reasons with solid relation to Packer’s 

target stops. The main challenges accomplished on 

the study are listed below: 

1. Combine asymmetric data sets; 

2. Retrieve Maker attributes, relevant to the model; 

3. Produce a solid range of features from the few 

available variables; 

4. Properly estimate the influence of Buffer by 

considering its size; 

5. Determine the right classifier for an effective 

prediction of the target stops. 

Expertise of operators and maintenance personnel 

was essential to define the features that were more 

representative of the operational reality. As it is 

unattainable the calculation of Buffer size, it is not 

possible to determine the amount of time spent by a 

Unit during this course. To overcome the stated 

obstacle, the concept of Lookup Tiers was introduced 

in the data preparation stage. Time is a fundamental 

dimension to be considered in problems of this nature 

and, in the current use case, represents a distinctive 

factor in feature generation to blockage prediction. 

The classifier that best fitted this purpose was the 

Extremely Randomized Trees, proposed by Geurts et 

al [11]. Testing data was applied to tune the model’s 

hyper-parameters, while the validation data set was 

used to evaluate its performance. Justified by the 

context of the problem and the requirements for a 

low rate of false discoveries, the threshold of 0.78 

allows a FDR lower than 10%, maintaining the TPR 

at 68%. From an Operational perspective, the 

reduction of target stops is the central objective. 

However, it is important to note that the algorithm 

only indicates the probability of the occurrence of 

these blockages and could not have a direct impact 

on machine performance. The aim is to alarm the 

operator so he can prevent the failure. Therefore, the 

analysis of the effectiveness of the algorithm in the 

industrial context could only be attained by assuming 

that only 50% of the identified stops could be 

avoided by the operator. Considering only the 

achievable reduction of target stops an increase in 

47% was determined for the historical MTBF of 

Packer. The importance of adapting the data to the 

problem context and the insights from the 

experienced personnel is a considerable output 

regarding the application of machine learning in an 

operational environment. 

6.2. Future work 

Further analysis should be carried to identify possible 

changes that could benefit the work environment. In 

the author’s perspective, the step further should be 

taken by integrating online data with the concept of 

Internet of Things applied to machine learning. The 

adoption of the suggested approach is vital to prove 

the integrity of this work, providing a wider 

knowledge concerning the predictive maintenance 

groundwork. 
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